University of Arizona
Paul Lee
1306 E. University Blvd
Tucson, AZ 85719
https://cbc.arizona.edu/rss/lessa-facility
RRID: RRID:SCR_022885
Data Analysis And Interpretation
Data Processing And Interpretation
Photoelectron Spectroscopy
Spectroscopy
1.) Mohapatra AA, Yual WK, Zhang Y, Samoylov AA, Thurston J, Davis CM, McCarthy DP, Printz AD, Toney MF, Ratcliff EL, Armstrong NR, Greenaway AL, Barlow S, Marder SR (2024 Jan 23). Reducing delamination of an electron-transporting polymer from a metal oxide for electrochemical applications. Chemical communications (Cambridge, England), 60(8), 988-991. doi: 10.1039/d3cc05391a. PMID: 38167668.
2.) Li Y, Lohr PJ, Segapeli A, Baltram J, Werner D, Allred A, Muralidharan K, Printz AD (2023 May 24). Influence of Halides on the Interactions of Ammonium Acids with Metal Halide Perovskites. ACS applied materials & interfaces, 15(20), 24387-24398. doi: 10.1021/acsami.3c01432. PMID: 37162743.
3.) Du Hill L, De Keersmaecker M, Colbert AE, Hill JW, Placencia D, Boercker JE, Armstrong NR, Ratcliff EL (2022 Jan 4). Rationalizing energy level alignment by characterizing Lewis acid/base and ionic interactions at printable semiconductor/ionic liquid interfaces. Materials horizons, 9(1), 471-481. doi: 10.1039/d1mh01306h. ID: 34859805.
4.) Placencia D, Lee P, Tischler JG, Ratcliff EL (2018 Aug 1). Energy Level Alignment of Molybdenum Oxide on Colloidal Lead Sulfide (PbS) Thin Films for Optoelectronic Devices. ACS applied materials & interfaces, 10(30), 24981-24986. doi: 10.1021/acsami.8b07651. ID: 30014689.
5.) Steirer KX, Ou KL, Armstrong NR, Ratcliff EL (2017 Sep 13). Critical Interface States Controlling Rectification of Ultrathin NiO-ZnO p-n Heterojunctions. ACS applied materials & interfaces, 9(36), 31111-31118. doi: 10.1021/acsami.7b08899. ID: 28832121.
6.) Ratcliff EL, Shallcross RC, Armstrong NR (2016 Nov 9). Introduction: Electronic Materials. Chemical reviews, 116(21), 12821-12822. . ID: 27933777.
7.) Shallcross RC, Stubhan T, Ratcliff EL, Kahn A, Brabec CJ, Armstrong NR (2015 Apr 16). Quantifying the Extent of Contact Doping at the Interface between High Work Function Electrical Contacts and Poly(3-hexylthiophene) (P3HT). The journal of physical chemistry letters, 6(8), 1303-9. doi: 10.1021/acs.jpclett.5b00444. ID: 26263127.
8.) Matz DL, Ratcliff EL, Meyer J, Kahn A, Pemberton JE (2013 Jul 10). Deciphering the metal-C60 interface in optoelectronic devices: evidence for C60 reduction by vapor deposited Al. ACS applied materials & interfaces, 5(13), 6001-8. doi: 10.1021/am400640x. ID: 23734813.
9.) Glowatzki H, Bröker B, Blum RP, Hofmann OT, Vollmer A, Rieger R, Müllen K, Zojer E, Rabe JP, Koch N (2008 Nov). "Soft" metallic contact to isolated C60 molecules. Nano letters, 8(11), 3825-9. doi: 10.1021/nl8021797. PMID: 18954123.
A photoelectron spectroscopy and thin-film deposition facility supporting thin-film design, growth and analysis research programs.